Unusual denaturation trajectory of bovine gamma globulin studied by fluorescence correlation spectroscopy.
نویسندگان
چکیده
Non-native and denatured states of proteins have received increasing attention because of their relevance to issues such as protein folding and stability. In this context, the pathway of polypeptide collapse and random coil formation in a denatured protein is a subject of much interest. Most proteins so far studied have shown monotonic expansion of their hydrodynamic radius (RH) in the presence of increasing concentration of chaotropes. We have studied GdnHCl-induced folding transitions and conformational states of a multi-domain protein, bovine gamma globulin, using fluorescence, circular dichroism and fluorescence correlation spectroscopy (FCS). FCS measurements showed that for gamma globulin, contrary to the observed trend, RH decreases with increasing GdnHCl concentration up to 3 M. At higher GdnHCl concentration, RH starts to increase but exhibits complicated behavior in the form of two sharp maxima at 4 M and 7 M. Further experiments suggest that the maximum at 4 M GdnHCl arises due to electrostatic interaction, whereas the one at 7 M GdnHCl corresponds to the usual expanded conformation due to denaturation. Beyond 7 M GdnHCl, RH decreases drastically and is shown to result from fragmentation of the protein caused by rupture of disulphide bonds by the high GdnHCl concentration. Our results demonstrate the capability of FCS in revealing intricate details of the unfolding trajectory that eludes conventional ensemble techniques such as fluorescence and CD.
منابع مشابه
Sensitization to Denatured Autologous Gamma Globulin
Immunization of guinea pigs with denatured autologous gamma globulin results in the development of delayed hypersensitivity to some form of gamma globulin. When the autologous gamma globulin is subjected to denaturation with alkaline treatment as employed in this study, guinea pigs regularly develop reactivity to the immunizing material and occasionally to some form of heterologous gamma globul...
متن کاملFluorescence studies on denaturation and stability of recombinant human interferon-gamma.
Unfolding/folding transitions of recombinant human interferon-gamma (hIFNgamma) in urea and guanidine chloride (Gn.HCl) solutions were studied by fluorescence spectroscopy. At pH 7.4 Gn.HCl was a much more efficient denaturant (midpoint of unfolding C* = 1.1 M and deltaG0 = 13.4 kJ/mol) than urea (C* = 2.8 M and deltaG0 = 11.7 kJ/mol). The close deltaG0 values indicate that the contribution of ...
متن کاملPosition-sensitive scanning fluorescence correlation spectroscopy.
Fluorescence correlation spectroscopy (FCS) uses a stationary laser beam to illuminate a small sample volume and analyze the temporal behavior of the fluorescence fluctuations within the stationary observation volume. In contrast, scanning FCS (SFCS) collects the fluorescence signal from a moving observation volume by scanning the laser beam. The fluctuations now contain both temporal and spati...
متن کاملHoney-Induced Protein Stabilization as Studied by Fluorescein Isothiocyanate Fluorescence
Protein stabilizing potential of honey was studied on a model protein, bovine serum albumin (BSA), using extrinsic fluorescence of fluorescein isothiocyanate (FITC) as the probe. BSA was labelled with FITC using chemical coupling, and urea and thermal denaturation studies were performed on FITC-labelled BSA (FITC-BSA) both in the absence and presence of 10% and 20% (w/v) honey using FITC fluore...
متن کاملHost-Guest Complexation Studied by Fluorescence Correlation Spectroscopy: Adamantane–Cyclodextrin Inclusion
The host-guest complexation between an Alexa 488 labelled adamantane derivative and beta-cyclodextrin is studied by Fluorescence Correlation Spectroscopy (FCS). A 1:1 complex stoichiometry and a high association equilibrium constant of K = 5.2 x 10(4) M(-1) are obtained in aqueous solution at 25 degrees C and pH = 6. The necessary experimental conditions are discussed. FCS proves to be an excel...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physical chemistry chemical physics : PCCP
دوره 17 29 شماره
صفحات -
تاریخ انتشار 2015